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Outline

@ Seismic hazard within risk applications
® Requirements of ground-motion and correlation models
® Implications of the ergodic assumption for seismic risk

® Non-ergodic issues within seismic sequences



Conceptual risk framework

Seismic sources and
rupture scenarios

-122°45' -122°30 -122°15' -122°00'

38°00' I

sl 38°00
Yerba Buena Island \
o
%
o ‘% o
37 45’ ‘3*% 37 45’
%%

e

gt

WWW-—

Ground motions for every
rupture scenario

R oo R A
bbb A
i

%—%

Structural performance

@ From a seismic source model we define A(rup), the P(rup) in some time window, or some stochastic

sequence of rup scenarios

® For each rup we could pass compatible ground motions directly through the structural model and
obtain the response distribution frpp(edp; rup)

® Loss estimates are derived from the conditional distribution of EDP | rup



Typical risk framework (single site)
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@ A seismic source model defines A(rup), the P(rup) in a time window, or some stochastic sequence of rup scenarios

® Ground-motion models and correlation models are used to predict the distribution of intensity measures fj,,(im; rup)
for each rupture

® A relatively small suite of ground motions are selected to be representative of f;,(im; rup), and upon passing these
through the structural model we estimate fpppipp (edp |im; rup)

@ Loss estimates are derived from the conditional distribution of EDP | IM



Typical risk framework (single site)

Seismic sources and Ground motions used
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@ A seismic source model defines A(rup), the P(rup) in a time window, or some stochastic sequence of rup scenarios

® Ground-motion models and correlation models are used to predict the distribution of a single intensity measure
Jim, (imy; rup) for each rupture

o A relatively small suite of ground motions are selected to be representative of fIM| IMl(im | imy; rup), and upon

passing these through the structural model we estimate fgpp|;,, (€dp | im; rup)

® Loss estimates are derived from the conditional distribution of EDP | IM,



Typical risk framework (portfolio)

Seismic sources and . . L Structural performance via
. Simulations of ground-motion fields i, .
rupture scenarios fragility curves representing
building classes
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@ From a seismic source model we define A(rup), the P(rup) in some time window, or
some stochastic sequence of rup scenarios

® (Ground-motion models and correlation models are used to simulate fields of intensity
measures according to im ~ MVN [(,u(mp), Z(rup)]

® Loss estimates are derived from fragility curves DM | IM



Typical risk framework

Our objective is to calibrate these various different approaches to solving the same
problem such that they provide similar results

For portfolio risk applications it is clear that simplifications must be made in light of the
computational and data requirements

However, it is still important that we attempt to ensure that the various characteristics of
the ground-motion fields and structural portfolio are represented in our simplified
methods

The focus of this presentation is to discuss the requirements for ground-motion models
used within portfolio risk applications and to highlight potential inconsistencies that exist
INn current approaches



Requirements for ground-motion
models




Model assumptions

The focus of the ground-motion model is solely upon f(IM; rup), but it is important ensure

that the IM's that our model generates are consistent with what is used for the fragility
modelling

We assume that the distribution f(IM; rup) is well-represented by a multivariate normal
distribution (for logarithmic intensity measures)

fUM; rup) = MVN [ﬂ(rup), Z(rup)]
We therefore require:
~ u(rup) - which is provided by the ground motion model; and

- 2(rup) - which is the covariance matrix of the intensity measures for each rupture

The current presentation focus upon 2(rup), its constituent components, and its
uncertainty



Traditional components of ground motion variability

General representation of variability components in ground-motion models for
portfolio risk applications

Simulated surface Between-event
motion (linear case) variate

N \

im(x) = p(x; rup) + og + oy/(x)

Median surface Within-event
prediction (linear case) variate

Nonlinear site response complicates this a little as we first predict an motion at some reference velocity
horizon (at depth), and then compute the amplification as a function of this motion

Motion at depth: im,,ef(x) = //t,,ef(x; rup) + 5B,O + 5W,O(x)

Motion at surface: im(x) — im,,ef(X) T Uin AF lx, imref(X)] T En AF lx; imref(x)]



Traditional variance structure

Event variates are normal with variance ¢

im(x) = u(x; rup) + og + oy(x)

6r ~ N(0,7°)
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Event variates are normal with variance ¢

Traditional variance structure

2, within-event variates are multi-variate

normal with marginal variance ¢»* and a spatial correlation matrix R(x)

im(x) = u(x; rup) + 8z + Sy/(x) 0r ~ N(0,7°) Sy(x) ~ MVN |0, p*(0)R(x)|  o(x) = \/ % + % (x)
1 1
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Correlation cases

For a general risk model there are various correlations among IMs that need to be considered

‘Same’ ‘Same’ buildings, Ditferent Different buildings,

‘ bun,dlngg,. different positions ‘ bUII,dlng§,. different positions
same’ position same’ position

p({T1,z1},{Th,z1}) =1 p ({11, x1},{Th1,x2}) <1 p({Th,x1}, {Ts,x1}) < 1 p({T1 21} T2, 223) <1

. ¥

.

No correlation Only spatial Only inter-IM Spatial and inter-
required correlation correlation IM correlation



Issues with treatment of correlation cases

For a general risk model there are various correlations among IMs that need to be considered

‘Same’ ‘Same’ buildings, Different Different buildings,
buildings, different positions bU|Id|ng§,_ different positions
‘same’ position ‘same’ position
p({Tlaml}a{Thwl}) =1 p({Tlawl}a{TlawZ}) <1 p({Tlaml}v{T%ml}) <1 p({Tl’wl}’{TZ’wQ}) <l

. ¥

.

All buildings obviously not Pure spatial correlation Need to down-weight the . .
. . L . i Have to consider possible
at the same location - from point-to-point ignores typical inter-period .
e . . combinations of actual
cannot really have perfect spatial distribution of correlation to reflect spatial

correlation within cell buildings within cells distribution locations for each building



Markovian approximation

Inter-period correlation from Spatial correlation of
Baker & Jayaram (2008), p(1, T5) Jayaram & Baker (2009), p(x, X, | max(7;, 7,))
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o Ihe correlation between IMp at location x; and IM p at location X; can be very well approximated by the

inter-IM correlation for zero separation distance, and the spatial correlation for the two locations based
upon the lowest frequency IM D ({Tbxl}’ {T2, x2}> ~ p(Tla T2) % P(xpxz | maX(Tl, TZ))



Effective inter-period correlations

Different
buildings,
‘same’ position

p({T1,x1}, {12, x1}) <1

%

Need to down-weight the
typical inter-period
correlation to reflect spatial
distribution

® Correlation models that are normally
used represent correlations among co-

located IMs

® However, this isn’t really what we want
V1> Y2
® Even ignoring the fact that buildings 1_. Ay

within a class will have different 2
periods (which should be accounted

for in the fragility derivation), the

spectral demands across buildings

within a cell will vary due to their L
spatial separation

Ax J

1
P11, 13) = Ax2Ay2 H]]P ({xl»h}» {xza Y2}a 1, Tz) dx,dx,dy,dy,
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© Naturally, the larger the cell size, the greater the reduction in the inter-period correlation

® One needs to be working at a relatively high resolution in order to ignore this effect

® This reduced inter-period correlation also induces a slight increase in the ground-motion variability for the cell

Ao(x) ~ a(x)\/ 1 —p2,




Effective inter-cell correlations

Different buildings,
different positions

® Similarly to the effective inter-
period correlations, we make the
extension of the spatial —

p({Th,z1}, {12, x2}) <1

discretisation over offset cells 't

® This reflects the unknown location —
of buildings of different classes ) Ax X
throughout the respective cells

Have to consider possible
combinations of actual
locations for each building

1
Peff(Tla I,) = D22 J]H p <{x1,y1}, {xza Y2}a 1, Tz) dx,dx,dy,dy,
x=y +=Ax,+=Ay



Effective inter-cell correlations

1.0
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® |Largest differences arise at short separation distances where the correlation is most important

® Typically a small reduction in correlation, but it varies with the relative sizes of the cells



The ergodic assumption in ground-
motion modelling




Ergodic assumption

-

N
Individual sites

with limited history
_/

_ TLme
Distant Past Recent Past Future
+Site 1
! Historical record A Vs
extended through the |
_ ergodic assumption —° TSite 2
+ Target site

\ o +Site 4

—o TSite 5

—o +Site 1

Space

® We desire a ground-motion model that

reflects the local source, path and site
characteristics

@ At the same time we want a model that

robustly predicts ground-motions for all
rupture scenarios of interest in the risk
analysis

@ We can’t have both, so we favour the

second point by importing data from
other regions

@ We assume that this pooled (ergodic)

data have the same statistical
characteristics as what would be
obtained at our target site

We effectively trade space for time

In doing so we inflate the variance and
over-estimate correlations



Components of ground motion variability

General representation of variability components in ground-motion models for
portfolio risk applications

Simulated surface Location Between-event Component-to-
motion (linear case) variate variate component variate

\ \ / +

im(xs) — /’t(xs; l"l/tp) + 5L(xe) T 5B T 5Wes(xs) + 552S(xs) T 5C2C(xs)

w / \
Median surface Site & Event Between-site
prediction (linear corrected within- variate
case) event variate

Nonlinear site response complicates this a little as we first predict an motion at some reference velocity horizon
(at depth), and then compute the amplification as a function of this motion

Motion at depth: im,,ef(x) = //t,,ef(x; rup) + 0;(x) + op + 5Wes(x) + 5C2C(x)

Motion at surface:  im(x) = i, (X) + fin ar [x, im,,ef(x)] t oo lx; im,,ef(x)]



Components of GM variability
" Traditional ergodic approach )

im(x) = u(x; rup) + og + oy/(x)
Y(x; rup) = v° + p*(x)

\_

4 Non-ergodic approach
im(x) = u(x; rup) + or(x,) + og + 0g5(X;) + oy (X;)

U\

N - 4

Op ergodic equivalents Oy/(X)

2(x;rup) = T[%(xe) + Té T ¢§S(xs) + ¢52’25(xs)

_—

7% ergodic equivalents % (x)

\_ J

The systematic source effect 0; (x,) and systematic site effect 0¢,¢(x,) are actually epistemic
terms that should be reflected within a logic tree rather than in the aleatory variability




Components of GM variability

4 Non-ergodic approach )
im(x) = u(x; rup) + o;(x,) + og + 0g5y5(X;) + oy (X)

Op ergodic equivalents O/ (%)

2(x; rup) = )0, + 15 + dsgx) + pHx,)

7% ergodic equivalents d*(x)

\_ /

With the systematic source effect 9, (x,) and systematic site effect d¢,(x,) estimated,
the covariance terms reduce as Té < 7% and gbgs(x) < h*(x)

AS noted yesterday, Istanbul is exposed to a very particular rupture scenario, and
relatively good information exists regarding the near-surface geotechnical profiles



Systematic source & site effects
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Impact upon
inter-period
correlation

® Here inter-frequency
correlations among Fourier
spectral ordinates are shown

® Correlations among the
between-site components is
relatively strong and so the
removal of these effects
reduces the overall
correlation

® This maps through to inter-
period correlations among
response spectral ordinates
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®

Impact upon spatial correlation

Jayaram & Baker (2009) presented a now widely-adopted spatial correlation model

They use an exponential model that has a different correlation length, r, for periods
below 1.0 seconds, depending upon whether site conditions are ‘clustered’ or

‘unclustered’

This approach was motivated by strongly different correlation lengths found in different

regions (and soil conditions were held responsible)

Their model is ergodic and can be expressed as:

InSa(x) = wy, ¢ ,(x; rup) + 05 + op(x)

P <5W(xi)a 5W(xj)) = EXPp (—

| 1x; —x;] |

r

og ~ N (0,72)

):eXp (-

A

r

Sy(x) ~ MVN (0, p*(x)R(x))

) = p(A)
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Non-ergodic spatial correlation

® If we partition the variance so that we have systematic event and site effects then we rewrite the

model as:

InSa(x) = py, 5,(x; rup) + 05 + 0g55(%) + Oy (X)

op ~ N (0,12)
O¢rg(x) ~ MVN

5W8S(X) i MVN

® The overall within-event spatial correlation in this case is represented by:

p |8, 61(x)

| _ Pw(X; xj)¢55(xi)¢55(xj) + ps(x;; xj)¢525(xi)¢szs(xj)
' P(x)P(x;)

0, 2, (xX)Ry(x)|

0, P2 (R (x)|

> 0 >
¢ = pig+ P

® Express the spatial correlations among 0¢,¢ terms and among oy, terms as exponential models

A

ps(X;, X)) = exp| —— pw(X;;X;) = exp | ——

¥

Fw



Correlation p
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Non-ergodic spatial correlation
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]
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® We can therefore consider the

ergodic correlation model as being
contaminated by correlations
among systematic site effects
(epistemic terms) that have some

correlation length 7
A A

L[, o .
p(A) = — g "V + ppee 78

¢2

Consider limiting cases of r¢ — ©0
(perfectly correlated site conditions)

and r¢ — 0 (completely random site
conditions)

Jayaram & Baker’s clustered vs
non-clustered results just reflect

implicit r¢ values for the regions
they investigated



Discrete model updates

Database 3

Continuous updating of GMM

Bayesian approach

Traditional approach

Database 2

Y

Database 1

\ 4

GMM 1: ©1(61),01(61)

GMM 2: p2(02),02(62)

GMM 3: u3(0s3),03(63)

Time
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Yi+1,
Yi+2,

Yi+3,
Yi+4a,
Yi+5,

Yi+6,

Yitj,

POly;x) o< L(y|0;x)P(0; )
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CO nti n u O u S u pd ate Of Method — Traditional — Bayesian

Riverside — 37 records

systematic site effects
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Non-ergodic risk analyses for
seismic sequences



Earthquake sequences

® (Consider risk analysis for earthquake
sequences - look at a couple of NZ

examples o
@E%; o}Q) °
® Usually ongoing risk analyses continue to i 0
make use of generic ergodic ground- ° o 5
motion models ° D
. J 63° o
im(x) = u(x; rup) + or(x,) + 0¢c + Op ¢ + 0gy5(X;) + Oy (X;) iy 22
- _ ) W o
cluster-specific effect, and o Fo %
within-cluster source effect o g S1C
%
. — 2 2 2 2 2 L 0
2(x;rup) = 77(x,) + 75+ Tpct Pi(X,) + P&y (X) ~

\ -

—

cluster-specific effect, and
within-cluster source variability a8

165 170 175 180
Longitude



Earthquake sequences

|dentify largest clusters according to
the Gardner & Knopoff declustering
algorithm

Look at the between-event residuals
(event random effects) for the events
within these clusters

Compare the variation of these
random effects in time

Compare the variability of random
effects within cluster to that obtained
for the entire NZ database

Latitude

Longitude



Canterbury sequence 2010-2011

0.01s)

® Particularly for the first year we have within-cluster
variability that is significantly lower than ergodic variability

Magnitude

o 4

® We can progressively updated the estimate of 0, as each
new event arrives

Between-event residual, Sa(T
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1.0-

Marlborough sequence 2013

0.01s)

® More of a swarm than a typical aftershock
sequence, but still a clear cluster offset, and
reduced variability compared to the ergodic model

Between-event residual, Sa(T

® Lower than average event terms (lower risk), lower
between event variability (lower risk)
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Source variability within sequences

© When evaluated across all
response periods, the within-
cluster variability is clearly lower
than the general between-event
variability from the entire NZ
database

® [wo factors at play here, the
location specific effect, and the
cluster-specific effect
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Conclusions

® Ground-motion models and correlation models used in risk analyses almost
always make use of the ergodic assumption

® This leads to inflated estimates of the variance (higher risk) and potentially
inflated estimates of correlations among intensity measures

® In locations like Istanbul it should be possible to reduce the degree of aleatory
variability to reflect the quite specific dominant source (lower between-event
variability), and to capitalise upon the relatively good characterisation of the local
soil deposits (lower within-event variability, and more accurate spatial correlation
models)

® For post-mainshock risk analyses, information from the sequence as it develops
can be used to refine risk estimates



